Search results for "Mixed phase"

showing 5 items of 5 documents

Junction Effect on the Photocatalytic Activity of Mixed-Phase TiO2 Nanoparticles

2010

Active TiO2 photocatalysts were prepared under mild experimental conditions by thermohydrolysis of TiCl4 in pure water at 100 {degree sign}C. The preparation method is very simple and does not require the use of expensive thermal or hydrothermal treatments. Depending on the TiCl4/H2O ratio, pure rutile, binary mixtures of anatase and rutile or anatase and brookite, or ternary mixtures of anatase, brookite and rutile, can be obtained. 4-nitrophenol photodegradation was used to evaluate the photoactivity of the various powders. The high photocatalytic activity of the mixed samples was explained by the presence of junctions among different polymorphic TiO2 phases that allows an improved charge…

Materials scienceChemical engineeringPhotocatalysis TiO2 TiO2 phases junctionTio2 nanoparticlesPhotocatalysisTiO2Settore CHIM/07 - Fondamenti Chimici Delle TecnologieMixed phaseECS Transactions
researchProduct

A microphysics guide to cirrus clouds - Part 1: Cirrus types

2016

Abstract. The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013). Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water Content-Temperature (IWC-T) parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last…

Atmospheric Science010504 meteorology & atmospheric sciencesIce crystalsMicrophysics010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:QC1-999Ice waterlcsh:Chemistrylcsh:QD1-999ddc:550Radiative transferEnvironmental scienceCirrusMixed phaselcsh:Physics0105 earth and related environmental sciences
researchProduct

Observations of boundary layer, mixed-phase and multi-layer Arctic clouds with different lidar systems during ASTAR 2007

2009

Abstract. During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR), which was conducted in Svalbard in March and April 2007, tropospheric Arctic clouds were observed with two ground-based backscatter lidar systems (micro pulse lidar and Raman lidar) and with an airborne elastic lidar. An increase in low-level (cloud tops below 2.5 km) cloud cover from 51% to 65% was observed above Ny-Ålesund during the time of the ASTAR campaign. Four different case studies of lidar cloud observations are analyzed: With the ground-based Raman lidar, a pre-condensation layer was observed at an altitude of 2 km. The layer consisted of small droplets with a high number concentration (aroun…

Boundary layerLidarArcticMeteorologyEnvironmental scienceMixed phaseMulti layerRemote sensing
researchProduct

Persistence of orographic mixed‐phase clouds

2016

Mixed-phase clouds (MPCs) consist of ice crystals and supercooled water droplets at temperatures between 0 and approximately −38°C. They are thermodynamically unstable because the saturation vapor pressure over ice is lower than that over supercooled liquid water. Nevertheless, long-lived MPCs are ubiquitous in the Arctic. Here we show that persistent MPCs are also frequently found in orographic terrain, especially in the Swiss Alps, when the updraft velocities are high enough to exceed saturation with respect to liquid water allowing simultaneous growth of supercooled liquid droplets and ice crystals. Their existence is characterized by holographic measurements of cloud particles obtained …

010504 meteorology & atmospheric sciencesIce crystalsMeteorologyVapor pressure010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesGeophysicsGeneral Earth and Planetary SciencesEnvironmental scienceClimate modelMixed phasePersistence (discontinuity)SupercoolingSaturation (chemistry)0105 earth and related environmental sciencesOrographic liftGeophysical Research Letters
researchProduct

Cloud top altitude retrieved from Lidar measurements during ACLOUD at 1 second resolution

2021

During the ACLOUD aircraft campaign (23.5.2017 - 26.6.2017) the AMALi Lidar was installed mostly nadir pointing. This dataset contains the cloud top altitude from those measurements (altitudes with a strong signal increase) as well as a cloud mask, derived from the optical depth of the column at 1 second resolution. The majority of the data was collected northwest of the Svalbard archipelago. More details on the campaign can be found in Wendisch 2018 and Ehrlich 2019 and here (https://home.uni-leipzig.de/~ehrlich/ACLOUD_wiki_doku). Please check the data documentation (https://download.pangaea.de/reference/108729/attachments/readme_documentation_AMALi_cloudtop.pdf) before using this dataset.

Longitude of eventAircraftPolar 5Binary ObjectAC3Latitude of eventSvalbardArcticArctic Amplification (AC3)Date/Time of eventAirborne Mobile Aerosol Lidarcloudairborne measurementsLidarEvent labelDate Time of eventairborneACLOUDBinary Object (File Size)mixed phase cloudsAMALiP5_206_ACLOUD_2017airborne lidarArctic Amplification AC3cloud top altitudeEarth System Researchmixed-phase cloudsBinary Object File Size
researchProduct